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Abstract—Overprivilege attack, a widely reported phenomenon in IoT that accesses unauthorized or excessive resources, is
notoriously hard to prevent, trace and mitigate. In this paper, we propose TBAC, a Tokoin-Based Access Control model enabled by
blockchain and Trusted Execution Environment (TEE) technologies, to offer fine-grained access control and strong auditability for IoT.
TBAC materializes the virtual access power into a definite-amount, secure and accountable cryptographic coin, termed “tokoin”
(token+coin), and manages it using atomic and accountable state-transition functions in a blockchain. A tokoin carries a fine-grained
policy defined by the resource owner to specify the requirements to be satisfied before an access is granted, and the behavioral
constraints that describe the correct procedure to follow during access. The strong-auditability is achieved with blockchain and a
TEE-enabled trusted access control object (TACO) to ensure that all access activities are securely monitored and auditable. We
prototype TBAC by implementing all its functions with well-studied cryptographic primitives over different blockchain platforms, building
a TACO on top of the ARM Cortex-M33 TEE microcontroller, and constructing a user-friendly APP for regular users. A case study is
finally presented to demonstrate how TBAC is employed to enable autonomous and secure in-home cargo delivery.

Index Terms—Fine-grained Access Control; Access Procedure Control; Auditability; Overprivilege Attack; Blockchain; Trusted
Execution Environment; IoT.

✦

1 INTRODUCTION

W ITH the rapid development of the Internet of Things
(IoT), IoT devices have become much smaller,

smarter, and more prevalent than ever before. Unfortu-
nately, it has been widely reported that a variety of main-
stream IoT devices and platforms such as Google Home [1],
Amazon Alexa [2], [3] and Samsung SmartThings [4] have
been secretly accessed by attackers without authorization.
With the household penetration of smart home devices
reaching 36.6% by the end of 2020 and being expected to hit
57.2% by 2025 [5], increasingly grave security threats have
been posed to ordinary users and their everyday life.

Unauthorized access reveals the open challenge of over-
privilege attacks in IoT security. Such attacks include 1)
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access unauthorized resources, 2) access excessive resources
than granted, and 3) access while not complying with the
access constraints – all are wished to be done secretly. Such
attacks are common in practice, as Felt et al. reported that
overprivilege vulnerabilities exist in over one-third of the
current Android-driven IoT devices [6].

Overprivilege attacks are mainly caused by three sig-
nificant design deficiencies of current IoT access control
schemes: 1) coarse granularity of the access policy, 2) lack
of access procedure control, and 3) weak auditability
towards all access activities. Coarse granularity refers to a
low expressiveness of the access policy – an inability to pre-
cisely define the required conditions to grant the access, the
exact amount of resource to release, and the strict process
regarding how the resource should be used. Lack of access
procedure control refers to the missing of continuously
monitoring how the resource is actually used, i.e., whether
the access procedure strictly follows what are defined by the
access policy, after access is granted. Weak auditability is an
inability to securely log all access activities in detail. Coarse
granularity is the direct cause of overprivilege attacks, while
lack of access procedure control leads to the oversights of
such attacks on the spot, and weak auditability implies the
impotence of holding the attacker accountable. Many IoT
access control mechanisms have been proposed in recent
years, but unfortunately almost all of them suffer from one
or more of the deficiencies mentioned above [7].

In this paper, we present TBAC, a Tokoin-Based Access
Control model. The design objective of TBAC is to provide
fine-grained access control for IoT applications that can not
only verify the conditions for granting the access rights but
also regulate the access procedure ensuring that the access
policy is strictly followed in whole, with all activities logged
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for auditing purpose. The access policy is carried by an ac-
countable digital asset, namely a tokoin (token+coin), which
is managed securely and auditably in the form of a crypto-
graphic coin with the assistance of blockchain and Trusted
Execution Environment (TEE) technologies. A tokoin can
only be created, modified and revoked by the resource
owner, and redeemed by a legitimate subject (user). In other
words, to access an IoT resource, one needs a tokoin issued
by the resource owner and redeems the resource by strictly
following the policy carried by the tokoin. In this paper, we
detail TBAC by making the following contributions.

First, by combining token and coin together, we ma-
terialize the “virtual” access right into a definite-amount,
cryptographically-secure and accountable digital asset that
is a tokoin. A tokoin represents both the access right and the
credential to redeem it. With the tokoin, succeeding in an
unauthorized access is as hard as forging a cryptographic
coin; thus a resource owner can have high confidence of all
upcoming access activities since only he can create, modify,
and revoke the tokoin. By this way the resource owner can
take full control of the access to his resource down to each
access activity and behavior, without the need of delegating
or relying on any third party such as a server and thus
avoiding the risk of being secretly accessed without autho-
rization. Benefiting from this design, we achieve flexibility
in secure peer-to-peer access privilege delegation and re-
distribution, enabling new applications such as IoT resource
rental and trading of IoT resource right-of-use.

Second, a tokoin carries the so-called 4W1H access policy
specified by the resource owner, which defines the access
conditions to be met and the access procedure to be fol-
lowed. The 4W1H stands for who is allowed to do what at
when in where by how, where the 4W present the static
access conditions that must be satisfied in order for an access
request to be granted, and the 1H describes the dynamic
access behavioral constraints specifying how to properly
use the resource after access is granted. Such a fine-grained
policy is carried by a tokoin, stored in a blockchain, and
enforced by TEE. Specifically, TBAC adopts a blockchain
for secure tokoin storage and atomic tokoin transfer, and
employs a TEE-enabled trusted access control object (TACO)
to verify whether or not the access conditions and the access
procedure follow the predefined 4W1H policy. TACO does
the following: 1) collects status to make access decisions,
2) monitors the actual resource-using process and identifies
misbehaviors, and 3) records proofs of misbehaviors (if oc-
cur) and makes them publicly verifiable on the blockchain.
One can see that TBAC achieves fine-graininess, access
procedure control, and strong accountability by adopting
tokoins that carry owner-defined 4W1H access policies and
employing the blockchain and TEE technologies to securely
log all on-chain/off-chain activities.

Third, a complete and effective access control scheme
should implement the three processes of Authentication,
Authorization and Auditing to ensure that an authentic sub-
ject is authorized to access the right amount of resource, no
more no less, under verifiable conditions following a fully
accountable procedure. We define all the tokoin functions
and detail their implementations to demonstrate how these
three processes are realized. We also provide Go-Tokoin and
Ethereum-Tokoin, the two prototypes of the TBAC scheme,

with the former following the native design (Tendermint-
BFT) for best performance and the latter showing the
adaptivity of TBAC to mainstream blockchain platforms
(Ethereum). The TEE-enabled access control object is imple-
mented in the ARM Cortex-M33 based microcontroller pro-
tected by the ARMv8-M TrustZone, to securely sample the
physical environment for access condition verification and
access procedure monitoring. To the best of our knowledge,
we are the first to develop applications on the Cortex-M
series TEE microcontrollers, which are specifically designed
for low-cost trustworthy embedded systems by supporting
hardware-level program security isolation. As the Cortex-M
series TEE microcontrollers offer very little usable libraries,
we build our access control object TACO roughly from the
bare metal level, thus facing a great engineering challenge. A
friendly TBAC Android App is developed for convenience
and better user experience. All codes are open-sourced and
available at Github.

Fourth, we present a TBAC-assisted in-home cargo deliv-
ery case study to demonstrate how TBAC is utilized for real
world applications. This case study permits autonomous
in-home delivery, in which a deliveryman can open the
smart door and put the cargo down on his own in the
designated area (e.g., mud area). It involves an access proce-
dure control mechanism to guarantee that the deliveryman’s
actual behavior does not violate the access policy (e.g., not
entering the main room) and ultimately the home owner’s
physical security. More importantly, this case study provides
a seamless integration of blockchain and IoT to extend the
on-chain trustworthiness to off-chain physical world. This
piece of work itself has its own significance in many IoT
applications that require trusted management. Our case
study also shows that secure and accountable accesses to
physical resources can be achieved by techniques that are
used to be only available in the digital world.

This paper is organized as follows. We first present the
most related work in Section 2. Then we propose our tokoin
based access control model TBAC in Section 3 and detail
its implementation in Section 4. The TBAC-assisted in-home
cargo delivery case study is reported in Section 5. We discuss
additional issues of TBAC and future research in Section 6.

2 RELATED WORK

With IoT devices integrating deeper and deeper into our
daily life, the challenge of overprivileged accesses becomes
more and more grave since it extends digital threats to real-
life safety. To address this problem, the IoT security com-
munity has conducted research along two major directions:
security analysis and access control mechanism design, with
the former aiming to discover existing device/platform’s
overprivilege vulnerabilities and fix them, while the latter
intending to prevent overprivileged accesses by design. In
the following we discuss their recent advances.

2.1 Mitigating Overprivilege Attacks through Security
Analysis

Security analysis based countermeasures consider overpriv-
ilege vulnerabilities as programming deficiencies. They at-
tempt to mitigate the problem by identifying deficiencies
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based on learned characteristics. Fernandes et al. [4] uncov-
ered a severe overprivilege vulnerability in the Samsung
SmartThings platform, which allows attackers to falsely turn
on a fire alarm. This work does not consider defensing
such an attack. Zhang et al. [8] discovered that attackers
can create malicious functions on the Amazon skill platform
to launch overprivilege attacks and perform eavesdropping
activities through Alexa. To mitigate this threat, the authors
developed a skill-name scanner and a context-sensitive de-
tector to filter out problematic functions. Jia et al. [9] pre-
sented a graph-based algorithm to automatically excavate
the overprivilege weaknesses in smart home authentication
protocols. Celik et al. [10] hand-crafted 20 common flawed
apps, with which a model-checking based solution was
developed to automatically identify the flaws.

In summary, the mechanisms mentioned above mitigate
the overprivilege challenge by first discovering the vulner-
abilities, then learning their features, and finally detecting
their presence in a general environment. Their false-negative
rates are usually high, and they may fail to detect emerging
vulnerabilities (e.g., zero-day vulnerabilities).

2.2 Mitigating Overprivilege Attacks through the De-
sign of New IoT Access Control Schemes

As discussed earlier, the overprivilege challenge is mainly
caused by the following three design deficiencies of com-
mon access control mechanisms: 1) coarse granularity of
access policy, 2) lack of access procedure control, and 3)
weak auditability towards access activities. While an ideal
IoT access control scheme should address all these three
concerns, yet many, if not all, recently proposed methods
fail to do so.

Works That Improve Auditability: When designing
new access control schemes with better auditability, many
researchers resort to blockchain utilizing its highly auditable
nature in recent years. However, most blockchain-based
access control schemes just simply combine blockchain
with existing solutions, leaving coarse-granularity and the
lack of access procedure control unaddressed. For exam-
ples, Zhang et al. [11] developed an ACL-based access
control scheme on top of multiple Ethereum smart con-
tracts, following the classic coarse-grained Unix style ACL
{Read, Write, Execute} → {Allow, Deny}; Xu et al. [12] pro-
posed BlendCAC, which employs Ethereum smart contracts
in replacement of the traditional capability access server to
issue and manage coarse-grained Linux-style access capa-
bilities; Maesa et al. [13] adopted smart contracts to realize
attribute-based access policies, successfully transforming
policy evaluations to smart contract executions. Sun et al.
[14] presented a secure, lightly-weighted, and cross-domain
IoT access control system, using blockchain to record the IoT
entities’ attributes, policy files’ digests, and access decisions.
All works mentioned above overlook the access procedure
control; therefore it is hard to ensure that a resource is
not abused after release, which obviously could make the
resource vulnerable to overprivilege attacks.

Works That Improve Granularity and Access Proce-
dure Control: Since coarse access control granularity is the
main cause of overprivilege challenge, context-based and
situational-aware access control emerge as new research

directions for the purpose of obtaining more expressive-
ness and accuracy of access policies. Context-based access
control takes consideration of the current status of the IoT
devices/apps such as inter-procedure controls, data flow
levels and call-stacks as parts of the control strategy. Such
schemes increase the access granularity by more explicitly
defining whitelisted data flow or control flow patterns
and prohibiting all others. Typical works include [15], [16],
[17], [18], [19]. Sergio et al. [15] proposed a capability-
based IoT access control system that supports access right
delegation and sophisticated access control customization.
Tian et al. [16] designed SmartAuth that collects security-
relevant information from an IoT app’s description, codes
and annotations to learn the app’s actual functionality to-
wards an IoT device, then guides the users to create more
precise access policies for the app. This effectively increases
the app’s resource access granularity and bridges the gap
between the functionalities explained to the user and the
operations the app actually performs. Jia et al. [17] presented
ContexIoT, a patch to Samsung SmartThings Platform Apps
that can gather essential information from the environment
of all the variables along the execution path of a security-
sensitive action. The context is then sent to the backend
permission-checking server for decision making and audit-
ing. Yahyazadeh et al. [18] proposed EXPAT that records user
expectations of how to use the resource and save them as
access policies. EXPAT continuously monitors the app run-
time to ensure that the user expectations are never violated.
This mechanism increases access granularity and provides
a certain degree of access procedure control. Bhatt et al. [19]
developed a formal attribute-based access control model to
enable fine-grained access control in AWS IoT. Situational-
aware access control was studied by Schuster et al. [20], who
presented an Environmental Situation Oracle (ESO) that
senses the physical statuses and exposes a simple interface
to tell the caller whether a “situation” (such as a human
behavior) is active or not. This allows a finer granularity for
making access decisions and can continuously monitor the
access procedure after the resource is released. Maanak et al.
[21] presented the concept of activity-centric access control
for IoT devices, which identifies different entities involved
along with the important factors to make an access control
decision.

Multi-user Access Control: There exist recent access
control works focusing on supporting multi-user control
towards IoT devices. Zeng et al. [23] proposed a multi-
user access control scheme for generally non-adversarial
smart home environments. They discussed privacy chal-
lenges, tensions and disagreements, and access power im-
balances among multiple users that share the same IoT
device through user studies and survey feedbacks. He et
al. [22] conducted a similar research in which access con-
trol and authentication for home IoT were re-envisioned
through a 425-participant user study to investigate user
tolerance to system malfunctions, default policy preferences,
and the impacts of contexts on access decision making
processes. Shantanu et al. [26] developed an access control
architecture for constrained healthcare resources in IoT,
which employs attribute-based, role-based, and capability-
based mechanisms to reduce the number of policies required
during multi-user access control. Sikder et al. [24] presented
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Major Techniques
Fine-
grainess

Audita-
bility

Access
Procedure
Control

IoTJ’18
Zhang et al. [11]

Smart Contract &
Unix-style ACL

é Ë é

iThings’18
BlendCAC [12]

Smart Contract &
Linux-style Access Policy

é Ë é

iThings’18
Maesa et al. [13]

Smart Contract &
Attribute-based
Access Policy

Ë Ë é

Access’21
Sun et al. [14]

Policy-based
Access Control

Ë Ë é

MATH COMPUTE MODEL’13
CapBAC [15]

Capability-based
Authorization

Ë é Ë

USENIX’17
SmartAuth [16]

Compare what is claimed
to be offered and what is
actually offered

Ë é Ë

NDSS’17
ContexIoT [17]

Gather environmental
info for decision making

Ë Ë é

SACMAT’19
EXPAT [18]

Take user expectations Ë é Ë

Access’21
AWS-IoTAC [19]

Attribute-based
Access Policy

Ë é é

CCS’18
Schuster et al. [20]

Environmental Situation
Oracle

Ë é Ë

SACMAT’21
Maanak et al. [21]

Activity-centric
access control

Ë é Ë

USENIX’18
He et al. [22]

User study Ë é é

USENIX’19
Zeng et al. [23]

User study é Ë é

WiSec’20
Kratos [24]

Policy manager to
resolve conflicts

Ë Ë é

JISIS’13
Hernandez et al. [25]

Distributed Capability-based
Access Control

Ë é é

J NETW COMPUTE APPL’19
Shantanu et al. [26]

Policy-based
Access Control

Ë é é

Tokoin-Based
Access Control

Blockchain & TEE Ë Ë Ë

TABLE 1: Comparison between TBAC and the latest access
control schemes. Legend Ë means the work has the corre-
sponding property and é indicates that the work does not
possess the property.

Kratos to handle the challenges brought by multi users
sharing multiple devices with conflicting and dynamically
changing demands in a smart home environment. Kratos
employs an interaction module to collect different access
control settings from the users, translates them into policies
at a backend server, and finally analyzes the policies, re-
solves the potential conflicts, and generates the final policy
via a policy manager. These interesting works target multi-
user access control, tackling the difficulties orthogonal to the
overprivilege challenge under our study.

2.3 Summary
The works mentioned above increase one or more per-
spectives of access control. Yet the following two vulner-
abilities are still not sufficiently addressed. 1) The log to
access activities may be subject to deletion, leaving IoT
devices un-auditable and vulnerable to unlimited uses (an
unlimited legal use is also an abuse). This can be better
handled with blockchain-based schemes but often neglected
by other mechanisms. In TBAC, access privileges (tokoins)
are definite-amount, meaning that a tokoin can designate
the exact amount of accesses and no unauthorized access
can take place. 2) How a user is actually using the resource
may not be fully monitored after access is granted. Access
procedure control is only achieved by very few works such
as app runtime analysis or physical monitoring as we know
by now. In TBAC, we introduce access procedure control
that continuously monitors the dynamic situations during

the access activities. If a misbehaving situation is detected
then we freeze the resource, record the proof of abused-
access and make it public on blockchain. A comparative
study on TBAC and the latest access control schemes men-
tioned above is presented in Table 1.

3 TBAC: TOKOIN-BASED ACCESS CONTROL

In this section, we first present our threat model and security
assumptions, then provide a high-level overview on the
TBAC protocol followed by its model definition, and finally
discuss the security strengths of TBAC.

3.1 Threat Model and Security Assumptions
Assume that an attacker A has access to all public TBAC
functions. From a cryptographic perspective, we consider
the following adversary model,

1) Probabilistic Polynomial Time (PPT) Attacker. The
attacker A can arbitrarily deviate from the protocol
and perform any computationally efficient attack that
runs in polynomial time and may use randomness to
produce non-deterministic results.

From the perspective of IoT, we consider authorization-
level security attacks by A:

2) Shallow-level Compromise. The attacker A can pene-
trate local area network (LAN), lure the user to install a
malicious app on the non-secure zone of the IoT control
hub (TACO in our system) and gain user mode control.

The attack goal is to perform an unauthorized access or
overprivileged access without leaving evidence:

• Unauthorized Access. An external attacker Aext aims
to perform an unauthorized access while no access
privilege has been granted. This is usually done by
exploiting security vulnerabilities in platforms [3] [27],
devices or protocols [4] [28] [29].

• Overprivileged Access. An internal attacker Aint with
only limited access privilege aims to perform an over-
privileged access. This is usually caused by coarse
granularity of the access policy or resource abuse after
access is granted [30].

• Covering Up Illegal Access: The attacker intends to
erase or hide the illegal access activities.

Our main security goal is to prevent privilege elevation
at the authorization stage and achieve trustworthy access
history audit.

Additionally, we assume the following building blocks
are secure, thus no PPT adversary can obtain more than
negligible advantage in compromising them.

• Blockchain: In this paper, we assume blockchain is a
tamper-resistant distributed ledger.
– Availability: Any data written to blockchain can be

correctly retrieved by a blockchain node within a
bounded time. Network-level attacks such as DDoS
and eclipse are out-of-scope of this paper.

– Integrity: Any data in blockchain is tamper-resistant.
• Trusted Execution Environment (TEE): We assume

programs deployed in a TEE secure zone is tamper-
resistant. Physical damage to TEE is beyond the scope
of this paper.
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3.2 High-level Overview on TBAC

We consider a large-scale IoT system that takes a three-
layer (device-edge-cloud) architecture in which devices are
in charge of environment sensing and edge/cloud layers
host a secure distributed ledger and the device servers.
Our TBAC constitutes three components: 1) a blockchain
system to manage tokoin and its carried access policy, 2) a
TEE-based trusted access control object (TACO) to sense the
physical world, make actual access decisions, and monitor
the access procedure, and 3) an App-based user interface.
The blockchain protects the security of on-chain tokoin man-
agement while TACO guarantees that the off-chain resource
access strictly follows the policy specified in a tokoin.

Owner SubjectCirculator Trusted Access 
Control Object

① Authorization
Process

② Transfer 
Process

③ Redeem 
Process

Processed on-chain Processed off-chain

BlockchainApp Trusted ACO

④ Confirmation Process

Fig. 1: Overview on TBAC

TBAC contains four steps starting from the creation of
a tokoin and ending when the mission of the tokoin is
completed, as shown in Fig. 1:

1 Authorization Process: a resource owner creates a
tokoin carrying an access policy. Note that the resource
owner can only control accesses to the resources he/she
owns.

2 Transfer Process: a circulator transfers the tokoin ar-
bitrarily to any other circulator or a subject through
standard coin trading functions. Freedom of transfer
changes only the holder of the tokoin – it does not
change the invariant that only a legitimate subject can
redeem the tokoin.

3 Redeem Process: a legitimate subject receives the
tokoin from a circulator, and redeems it to the trusted
access control object (TACO). TACO receives the tokoin,
retrieves the corresponding access policy, checks if the
current physical status meets the access conditions and
make actual access decisions.

4 Confirmation Process: if access is granted, TACO mon-
itors the use of the resource afterwards until the access
activity finishes. If the subject abuses the resource,
which violates the access policy, TACO takes appro-
priate actions with the captured proof uploaded to
blockchain.

Each of these processes is initiated through a blockchain
function call. There also exist other functions such as tokoin
revocation and modification, which are used by the resource
owner to revoke or revise a tokoin before it is redeemed.
We denote the entity roles in the above TBAC process as
R = {rO, rS , rC ,TACO}, in which rO refers to the resource
owner, rS a subject, rC a circulator, and TACO the trusted
access control object. Let rH denote the current holder of a

tokoin, which could be any of {rO, rS , rC}. Note that rS can
be a group of legal identities instead of one specific subject,
which provides flexibility in practice as the exact subject to
redeem the resource may not be known when the tokoin is
created.

Policy 1:
Subject:

0x40dCaF065caF80004342c1A9f3bcdC83A01e40bc
Resource:

com.example.mysolution:00000001828
Time:

22-02-16T12:05:00Z,
22-02-16T12:15:00Z

Location:
(31.24011, 121.49790),
(31.23982,121.49861),
(31.23923,121.49757),
(31.23905,121.49834)

Procedure:
PPC 1: Trespassing

200
PPC 2: Duration

10m

Fig. 2: An example tokoin access policy.

3.3 TBAC Model Definition

The core to TBAC is a fine-grained access policy constructed
to precisely specify what exact resources should be released
under what circumstances and how the resources can be
used. Accordingly, we propose the 4W1H access policy
which defines Who can access What resource in Where at
When by How. The 4W refers to the static access conditions
to be met based on which the access is granted, and the 1H
condition defines a dynamic process of how to use the phys-
ical resources after the access is granted. This access policy,
together with the processes of access condition verification and
access procedure monitoring, can enforce the correct use of the
physical resource.

In the actual syntax of the 4W1H policy, the 4W condi-
tion can be intuitively set. As seen from our given example
in Fig. 2, the subject field is the address of a single subject or
an identifier of a group of subjects1, the resource field is the
ID or address of the resource, the time field is the time slot
to access the resource, and the location field is a geo-fence
in which the resource can be accessed. The 1H condition is
specified as a list of perspective procedural constraints (PPC).
Each PPC restrains the subject’s behavior on a degree-of-
freedom of control he receives towards the resource. For
example, if we give a permission to someone to adjust a
thermostat, we restrain what temperature range the subject
can set; if we allow the subject to unlock a door, we restrain
how far the subject can enter the room and how long he can
stay. In Fig. 2, two PPCs are defined, with PPC 1 specifying
the farthest line the subject can reach before a trespass is
detected and PPC 2 the duration of this access process.

Next we define TBAC, the Tokoin-based Access Con-
trol model, and its nine high-level functions in Fig. 3:
Gen, Verify, Create, Transfer, Modify, Revoke, Redeem,

1. One can use a cryptographic accumulator to register an identity
into a group and verify whether or not an identity is included in the
group.
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Tokoin-based Access Control (TBAC) Model Definition

TBAC consists of the following nine polynomial time functions:
• Gen(s): Takes a master security parameter s and generates a public/private key pair (pk, sk) for each participant.1

• Verify(t, σsk, fid): Given a tokoin t, a signature σsk, and a function-call handler fid, where fid ∈
{Create,Transfer,Modify,Revoke,Redeem}, output ‘1’ if the signature σsk is signed by the function caller pk, tokoin
t is valid, and pk has the permission to perform function fid on t. All the following functions must first call Verify
to authenticate tokoin validity and caller identity.

• Create(policy): Given an access policy policy, produces a new tokoin t and sets its owner to caller pk.
- pk then acquires role rO.

• Transfer(t, pk′): Transfers the ownership of tokoin t to pk′.
- Requires caller is rH

• Modify(t, policy*): Updates tokoin t with a new access policy policy*.
- Requires caller is rO

• Revoke(t): Nullifies a tokoin t.
- Requires caller is rO

• Redeem(t): Given a tokoin t, on PolicyCheck(t) = 1, grants access to the IoT resource D.
- Requires caller is rS and PolicyCheck(t) = 1, otherwise transfers t back to rS .

• PolicyCheck: TACO samples the current environment and verifies whether the pre-access conditions and access
procedure are both compliant to policy. Output ‘1’ if yes and ‘0’ otherwise.

• Auditing: Logs all function calls and writes them to tokoin metadata.

1. For the ease of presentation we use the public key pk to represent the participant’s identity.

Fig. 3: TBAC Model Definition and Its Functions

PolicyCheck, and Auditing. These functions describe ideal
functionalities to achieve, which are necessary for any TBAC
implementation regardless of which platform to build on
because they constitute the Authentication, Authorization,
and Auditing (AAA) processes that are critical to any access
control scheme [31]. Specifically, the Authentication process
is an act of establishing or confirming the identity or capa-
bility as authentic, therefore it includes functions Verify and
PolicyCheck; the Authorization process determines whether
a person or a process is authorized to perform a given access
activity, thus it includes Create, Transfer, Modify, Revoke,
and Redeem, with Create creating a tokoin defining the
access privilege while Transfer, Modify, and Revoke making
proper modifications to the tokoin capability, and Redeem
finally taking back the tokoin capability and redeeming the
agreed resource; and the Auditing process is obviously im-
plemented by function Auditing, which makes accountable
audits over all activities and modifications to the access
tokoin.

We detail our TBAC implementation in the next section,
where we show the structure of tokoin t in a tuple format,
the corresponding block structure and the exact steps in
implementing these nine functions. For the ease of reading,
we collect the major notations and their abbreviations used
in this paper in Table 2, and summarize the properties of
TBAC as follows.

Security: No tokoin can be falsely created, tampered with,
redeemed, or revoked by an adversary. It prohibits
unauthorized uses of IoT resources.

Fine-Grained Access Control: A tokoin carries both static
restrictions for pre-access condition verification in order

for the requested access to be granted, and procedu-
ral restrictions for during-access behavior obedience
monitoring to avoid possible abuse of the resource. It
prohibits overprivileged uses of IoT resources.

Auditability: Usage and changes of tokoins are securely au-
dited. It prohibits the concealment of unauthorized or
overprivileged access activities over the IoT resources.

Direct Access Privilege Management: The IoT resource
owner can directly manage the access privileges to-
wards his resource with trust and transparency, without
the need of any third party access server.

Description Notation/Abbreviation
Resource Owner rO

Tokoin Holder rH = {rO, rC , rS}
Circulator rC

Subject rS

Resource D

Trusted Access Control Object TACO
Perspective Procedural Constraints PPC

Function-call Handler fid

Access Policy policy
Public Key and Private Key

of participant i pki, ski

Signature σ

tokoin t

TABLE 2: Notations and Abbreviations
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3.4 Security Discussions
As discussed in the threat model, TBAC faces two kinds of
attacks: unauthorized access performed by external adver-
sary Aext, and overprivileged access performed by internal
adversary Aint, with both wishing to be done secretly. The
difference between Aext and Aint is that the former does
not possess a valid tokoin while the latter does.

There are three ways for Aext to perform an unau-
thorized access: (A) stealing or forging a valid tokoin; (B)
replaying a Redeem message, pretending this message is
sent by a legitimate subject; or (C) penetrating the TEE
secure zone to manipulate access decisions. Aext might
steal or forge a tokoin by i) tampering with the blockchain
and changing an existing tokoin’s owner address or holder
address to its own address, or ii) conducting a replay attack
to resend a previously intercepted function call message
to blockchain. According to our security assumptions pre-
sented in Section 3.1, blockchain is considered as a secure
distributed ledger that supports trusted storage and atomic
state transitions, and is free from manipulation; therefore i)
is nullified. Additionally, one can include a timestep in each
signature to prevent successful replay attacks to nullify ii).
For the same reason one can thwart attack (B) replaying a
Redeem message, based on the fact that the possibility of
forging a digital signature in polynomial time is negligible.

The attack (C) can be defended based on the security
assumption that all programs written to the TEE secure zone
is free from tampering (Section 3.1); as a result, TACO can
securely retrieve access policies from a tokoin in blockchain,
make correct access decisions according to the access condi-
tions, and monitor the access procedures as we expected.
The Cortex-M series microcontroller we employ in this
study is also one of the very few TEE choices not yet been
found vulnerable in real life. Any shallow-level attack in
the non-secure zone will not work since the encrypting and
signing of data are done in the secure zone and an end-
to-end security channel is established between TEE secure
zone and blockchain.

The overprivileged access can be defended as follows.
An internal adversary Aint may want to penetrate TEE
secure zone to fake the data, change the access decisions,
or delete the proofs (particularly those proofs showing
that Aint violates the access procedural restraints). With
the 4W1H fine-grained access policy clearly defining the
conditions under which the target resource can be accessed
and the correct procedure to use it, and that TACO can faith-
fully execute the pre-access decision-making and during-
access monitoring processes, we are confident to claim that
TBAC can prohibit overprivileged accesses by granting only
the exact amount of resources and privileges to the sub-
ject and keeping all access behaviors fully accountable on
blockchain.

4 TBAC SYSTEM IMPLEMENTATION

In this section, we detail our implementation of the TBAC
system. First we present the primitive elements such as
tokoin structure, function-calling message structure and a
few cryptographic building blocks. Then we describe the
implementations of all TBAC functions. Finally we intro-
duce our TBAC prototype implementation, including the

blockchain ledger for tokoin manipulation, TACO, and an
Android TBAC App (TAP) for the ease of use.

4.1 Primitive Elements and Building Blocks
The basic structure of a tokoin t =
(tID, pkO, pkH , policy, isValid), where pkO and pkH are
respectively the public keys of the owner and current
holder of t, tID is a number uniquely identifying t among all
the tokoins generated by the owner pkO, policy defines who
is allowed to do what by how in where at when, and isValid is a
binary indicator with isValid = 1 if and only if t is still valid
(not redeemed and not revoked). Note that a tokoin t is
uniquely identified in TBAC by the two-tuple pkO and tID,
denoted by pkO||tID, as two tokoins generated by different
participants may have the same tID. For conciseness, isValid
is omitted and t is used instead of pkO||tID to identify a
tokoin, if clear from context.

A tokoin is stored on-chain and managed by functions
Create, Transfer, Modify, Revoke, and Redeem. Each function
is called by a message signed with the function caller’s
secret key sk. All blockchain nodes receiving the message
must first verify its authenticity and the caller role based on
the carried signature before triggering any activity defined
by the function. In TBAC, a message from a caller with
public key pk has the following format:

msg : (t, fid, [policy], [isValid], [pk′])σsk
(1)

where fid is the handler of the function to be called, i.e.,
fid ∈ {Create,Transfer,Modify,Revoke,Redeem}, σsk is the
message signature signed by the secret key of the function
caller pk, and the square brackets contain optional parame-
ters that depend on fid: if fid = Create then policy and isValid
are reqiured; if fid = Modify, then a new policy is required;
and if fid = Transfer then a new receiver’s address {pk′} is
required.

In our TBAC implementation, we utilize multiple key
cryptographic primitives that have been proved secure
and computationally efficient. They are carefully chosen
to fulfill TBAC’s security requirements while ensuring not
over-qualified for the tasks and not increasing unnecessary
overheads.

• Tendermint-BFT: Tendermint-BFT is an improved BFT
consensus algorithm over Practical BFT. It assigns dif-
ferent weights to different validator nodes, thus can
effectively defend against Sybil attacks [32].

• Digital Signature: We adopt ECDSA because it has a
shorter 256-bit key and slightly lighter computation
burden compared to RSA, thus especially suitable for
embedded systems.

• Cryptographic Accumulator: A cryptographic accumu-
lator describes a set of public keys with a short, ver-
ifiable signature. Given a public key, it can efficiently
verify whether or not this key is a member of the group.
We use it to define a group of legitimate subjects for
flexibility.

A full graphical illustration of our TBAC protocol is
presented in Fig. 4, which shows a chronological sequence
of all the functions affecting a tokoin throughout its life-
cycle. More specifically, a blue vertical rectangle represents
a tokoin while the blue vertical line it resides in indicates



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

record evidence, 
upload and terminate

Owner Circulator Subject

Create create tokoin 𝒕

Modify

Revoke

Transfer

Redeem

revoke tokoin

modify tokoin 𝒕 = 𝒕#

transfer 𝒕 to 
any 𝒓𝑪

transfer 𝒕 to 𝒓𝑺
Check constraints

Tokoin Protocol

SubProtocol: PolicyCheck

receive 𝒕 from 𝒓𝑺

transfer 𝒕
to 	𝑻𝑨𝑪𝑶

validate 𝒕, parse policy
check constraints

transfer to first 𝒓𝑪

Loop

Par

X

Trusted Access Control Object

Alt

Notify, return tokoin
if isValid>0 X

Check constraints

Alt

monitor access 
procedure

if constraints are not satisfied
reject access, transfer 𝒕 to 𝒓𝑺

if constraints are satisfied
grant access, continue, isValid-1

if violations detected

if no violations detected
success, record evidence, 

upload and finish

fail, record evidence, 
upload and freeze resource

Fig. 4: The Full TBAC Protocol Sequence Diagram

who possesses the tokoin; and a small cross says that the
tokoin becomes invalid (t.isValid = 0). We also have a few
keywords in Fig. 4, with Loop meaning that all functions
within the box can be repeatedly called, Par signaling that
any of the operations in the small box can be executed,
and Alt indicating an if-else branch. We assume the key
generation Gen is done by all participants before the whole
process starts and a PKI is ready to use.

4.2 Implementation of the Authentication, Authoriza-
tion, and Auditing Processes

4.2.1 Authentication

The Authentication process verifies 1) the authenticity of a
tokoin, 2) the caller’s role of a tokoin, and 3) whether the
access policy is strictly followed. In service to the Autho-
rization process, the Authentication process in TBAC makes
use of functions Verify() and PolicyCheck().

Implementation of Verify(). The function Verify() first
authenticates message integrity by verifying signature σ
with pk; if passed, it then verifies the function caller pk’s
role with respect to t. There are two different cases:

• role = rS , where Verify() checks pk against the crypto-
graphic accumulator acc stored in the access policy and
it returns 1 if and only if pk is a legitimate subject for t.

• role = rO/rH , where the caller’s public key pk is equal
to t.pkO or t.pkH , meaning that the caller is the resource
owner or the current holder of t.

Implementation of PolicyCheck() and TACO. The im-
plementation of PolicyCheck() requires a secure and trusted
access control object TACO that can securely and correctly
1) communicate with the blockchain network to fetch ac-
cess policy, 2) sample the current physical environment
and make access decisions, 3) verify whether the access
procedure is strictly followed after access is granted, and
4) upload the access results back to blockchain. In TBAC,

we utilize TEE to implement TACO as it provides a trusted
execution environment that guarantees security-sensitive
programs to be tamper-proof and correctly executed.

To achieve goal 1 and 4, we implement a blockchain
client inside the TEE secure zone to ensure that it commu-
nicates directly to our blockchain network via an authen-
ticated SSL/TLS channel. Data encryption and signature
are performed in TEE secure zone to realize an end-to-end
security. Such design allows TACO to work independently
as a light-weight blockchain node that does not maintain
a full ledger but can listen to the network layer messages
without relying on any unreliable proxy.

To achieve goal 2, we wire-connect the monitoring sen-
sors (such as GPS receiver or security camera) to the TEE
secure zone, and develop the sensor drivers in TEE. This
can make sure that the sensors collect correct and authentic
data without risking data interception or alteration. By
comparing the sensed data against the access policy fetched
from the redeemed tokoin, TACO can make correct access
decisions for the redeemer.

To achieve goal 3, we need to implement application-
specific algorithms to check whether any of the perspective
procedural constraints (See Fig. 2 for an example) defined in
the access policy is violated, and if Yes, appropriate actions
are taken and a proof of violation is sent to Blockchain for
auditing purpose. See Section 5 for a detailed implementa-
tion of how access procedure control is realized in our case
study.

4.2.2 Authorization

An Authorization process determines whether a person or
a process is authorized to perform an access activity. In
TBAC, this process can grant a capability (tokoin) to access
the resource, modify the capability, or redeem the capability
under correct access policy. It includes the following five
functions, whose implementations are detailed in sequel:
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1) Create(): create a new tokoin;
2) Modify(): modify the access policy of an existing tokoin;
3) Transfer(): transfer a tokoin to another participant;
4) Revoke(): revoke a tokoin;
5) Redeem(): take in a tokoin and redeem the resource.

Tokoin Transaction 
x

IsValid

Access
Policy

Owner pk
ID

Block

Non-Tokoin Transaction

Block Header

…

Example of an access policy
*(JSON format)

Subject 0x40dCaF065…

Resource com.example.my…

Time 22-02-16T12:05:00Z, 
22-02-16T12:15:00Z

Location (31.24011, 121.49790),        
(31.23982, 121.49861)…

PPC 1:
Trespassing 200

... …

PPC 2:
Duration 10m

Holder pk

Metadata

Tokoin Transaction y

Fig. 5: Block Structure and URPO

The implementations of these five functions require ex-
planation of the storage of tokoins. A tokoin should be
stored securely and can be transferred atomically. To realize
this objective, we develop the UnRedeemed Policy Output
(URPO) model, which is similar to Bitcoin’s UTXO model,
to manage the tokoins in the distributed ledger. Any op-
eration over a tokoin, including the creation of the tokoin,
starts from a message sent to all blockchain miner nodes
for verification and consensus approval. If successful, the
process takes in an existing tokoin if available, performs the
operations as requested, and stores the processed tokoin in
the next block within the ledger. This whole process is called
a tokoin transaction. As long as the latest tokoin transaction
output has a valid t.isValid, the tokoin remains valid.

The main purpose of this design is to maintain high
atomicity and accountability of a tokoin, which implies that
only atomic and one-to-one transitions can be allowed to
operate a tokoin. Each transaction must be verified by all
validating nodes in the blockchain with public knowledge,
and no tokoin can be forged or forfeited out of thin air. The
block structure is illustrated in Fig. 5. Each block contains a
number of tokoin transactions and each tokoin transaction
contains the native information of the tokoin as well as
a metadata field logging the corresponding information of
history activities over this tokoin. An access policy within a
tokoin is represented in the form of JSON key-value pairs
for its simplicity [33], [34], as illustrated in Fig. 5. One can

see that such a structure allows users to flexibly define their
own access policies at different granularity levels.

Any registered participant can create a tokoin, as long
as he issues access tokoins only to his own resource. To
make a tokoin Create() call, the participant sends out a
message msg : [Create, policy, isValid]σsk

signed with his
secret key sk. Upon correct verification of the signature,
Create() creates a new tokoin t = (tID, pkO = pk, pkH =
pk, policy= policy, isValid= isValid) and returns tID.

The implementations of Modify() and Transfer() are sim-
ilar to that of Create(), in that they all require an authenti-
cated request message carrying the corresponding function
handler fid sent to the blockchain system. But there are
subtleties that differ them significantly: Modify() can be
called only by a tokoin owner, and it changes the access
policy of the tokoin; Transfer(), on the other hand, can also
be called by the current holder of a tokoin, and it carries the
public key pk′H of the next holder thus changing the current
holder of the tokoin upon completion. Accordingly, the
message for Modify() has a format of [t,Modify, policy*]σsk

and that for Transfer() has a format of [t,Transfer, pk′]σsk
.

When receiving a Modify() message, the veri-
fiers in the blockchain system first check whether
Verify(t, σsk,Modify) = 1, i.e., check if t is valid, has a valid
signature σsk signed by pk, and pk = t.pkO; if yes, the
access policy of the tokoin is changed and the corresponding
transaction is recorded in the next block. Note that a revision
on an access policy can modify any key-value pair of the
policy, and can add new or delete existing key-value pairs,
to redefine the access policy. Also note that the values within
a policy are all plaintext-modifiable except the access subject
group, which consists of one or more individuals and is de-
scribed by a cryptographic accumulator; therefore, to add or
delete subject pk′, Add/DelACC(pk

′) and UpdateACC() should
be called to add or delete the subject and update the value
of Accumulator in the access policy. Similarly, when receiv-
ing a Transfer() message, the verifiers first check whether
Verify(t, σsk,Transfer) = 1, i.e., check if t is valid, has a valid
signature σsk signed by pk, and pk = t.pkO||t.pkH ; if yes,
the current holder of the tokoin t.pkH is set to pk′ and the
corresponding transaction is recorded in the next block.

The implementation of Revoke() is rather simple. To
revoke a tokoin t, the owner of t sends out a message
msg : [t,Revoke]σsk

to the blockchain system, in which the
verifiers first check whether Verify(t, σsk,Revoke) = 1, i.e.,
check if t is valid, has a valid signature σsk signed by pk,
and pk = t.pkO; if yes, t.isValid is set to 0 nullifying the
tokoin t in the system.

The implementation of Redeem() is a bit complicated.
Upon receiving a Redeem() message msg : [t,Redeem]σsk

from a holder, the verifiers need to check whether
Verify(t, σsk,Redeem) = 1, i.e., check if t is valid, has a
valid signature σsk signed by pk, andpk is a member of the
cryptographic accumulator ACC(); if yes, t is transferred to
TACO, who then calls PolicyCheck() to redeem the requested
resource. If PolicyCheck() successfully returns, which means
that the access process is successful, TACO sends a confir-
mation message to the tokoin owner rO. All activities in
the redeem process, including those from PolicyCheck(), are
recorded in the metadata field of the tokoin transaction for
Redeem().
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4.2.3 Auditing
Auditability and traceability are native in TBAC, as all
operations over a tokoin and all resource access activities
are logged within the metadata field of a tokoin transac-
tion stored in the blockchain. Such auditing evidence is
publicized and verified by the whole blockchain system,
and as a result, it is globally legitimate. Under the security
assumption that the blockchain system is free from ma-
nipulation and the consensus process is not compromised,
the auditability of tokoin management and access control
activities can be securely guaranteed.

4.3 TBAC Prototype Implementations

Our TBAC system consists of three components: 1) a
blockchain-based distributed ledger that securely manages
the tokoin access capabilities, supports secure atomic tokoin
operations in the form of transactions, and logs all activities
with security significance for auditing purpose, 2) a trusted
access control object TACO within a TEE chipset that hosts
the programs of embedded blockchain clients and sensor
drivers in its secure zone for collecting trusted environment
evidence upon redemption and making correct, attack-free
access control decisions, and 3) an App-based user interface
for a good user experience.

We have two implementations of the first component: a
native implementation Go-Tokoin in Go language (Golang)
that follows our original design for the best performance,
and an Ethereum based implementation Ethereum-Tokoin
in Solidity that shows adaptivity of TBAC to mainstream
blockchain platforms. We run Ethereum-Tokoin in both
Ethereum Mainnet and Quorum, a consortium fork version
of Ethereum that uses Raft or Istanbul-BFT consensus2. The
tokoin functions are tested on the Native Go-Tokoin and the
adaptive Ethereum-Tokoin. The experiments are run with
seven virtual nodes on top of a PC with the following
setup: 8-Core Intel i7-6700HQ @ 2.6GHz, 16G memory,
Ubuntu 18.04.1 GNU/Linux. We record and analyze the
performance of the implementations for the same case study
reported in Section5. One can preview the results in Fig. 10,
which indicate that our native Go-Tokoin takes typically 40-
60 millisecond to confirm a transaction, while the Ethereum-
Tokoin in Quorum consortium chain takes about 1 second
(more than a magnitude) and that in Mainnet takes about 30
to 50 seconds (one more magnitude than that).

4.3.1 Go-Tokoin: Native Golang Implementation
We implement the main blockchain system of TBAC with
over 3618 lines of code in Golang, including the Tendermint-
BFT consensus and the intercommunication protocols be-
tween a participant and the blockchain ledger. Golang is
selected because it is a memory-safe, high-concurrent, high-
usable language that is quite popular in the security com-
munity. As we build our native system pretty much from
scratch, we concentrate on flexibility and customized opti-
mization while strictly following the detailed construction
presented in Section 4.1. A complete working system is
available in Github at https://github.com/zhuaiballl/Go-
Tokoin.

2. https://github.com/jpmorganchase/quorum

4.3.2 Ethereum-Tokoin: Adaptive to Mainstream Platforms

Although our Go-Tokoin native implementation has better
performance and more design flexibility as demonstrated
by our case study in Section 5, we still want TBAC to
be readily available in other mainstream blockchain plat-
forms. Thus we implement all required TBAC functions in
Ethereum Solidity, in the form of a smart contract. As we
manage tokoins as digital assets, we develop the interface
on top of ERC-721 that is often used to represent unique
digital assets or collectibles, and can be tracked individually.
Then, we develop our own TBAC Smart Contract on top
of the ERC-721 interface, implementing the aforementioned
TBAC-specific functions, Ethereum events, and data mem-
bers. Each user can mint a tokoin by deploying a tokoin
smart contract. Users can directly implement their tokoin
contracts with Remix-Ethereum IDE, or simply use the
TBAC mobile App (presented in the following subsection) to
auto-generate one. We keep this open-source on the Github
at https://github.com/DES-PER-ADO/Ethereum-Tokoin.

4.3.3 The Trusted Access Control Object TACO

The functionalities and implementations of TACO are ex-
plained earlier so here we discuss more on our hardware
choices. The most popular TEE choices include Intel Soft-
ware Guard Extensions (SGX), ARM TrustZone, and AMD
Secure Execution Environment. In our implementation, we
adopt the LPC55S69-EVK microcontroller that uses ARM
Cortex-M33 chip on ARMv8-M TrustZone architecture for
the following reasons: 1) more rigorous security as its secure
zone and non-secure zone are precisely partitioned, 2) lower
power consumption, and 3) lower monetary cost ($20 for
Cortex-M33) compared to Cortex-A (∼$200) and Intel SGX
(∼$400) chips. The cost we have to pay is the availability
of very little library or SDK, thus a majority of our codes
are written by us in C and Assembly. Compared to the
rich libraries of Inter SGX and Cortex-A with developer-
friendly IDEs, we build the TEE system almost directly on a
baremetal MCU. We write about 3691 lines of code and our
executable binaries burnt into the MCU is about 2790 KB.

Note that the code for our trusted access control object
TACO is application-specific as the dynamic procedural
constraints are different. The one for the in-home cargo
delivery case study is available at https://github.com/DES-
PER-ADO/TACO.

4.3.4 TAP: the TBAC App

To avoid users from being messed up with different pro-
gramming languages, and more importantly, to provide
a better user experience with no code exposure, we de-
velop an easy-to-use TBAC mobile APP in Android, namely
TAP, that integrates a TBAC interface with a script/-
contract wrapper. The purpose of TAP is to keep users
from being exposed to Solidity, Javascript, Golang, or C
code. Similarly, the code of TAP is application-specific
and the one for our in-home cargo delivery case study
is available at https://github.com/DES-PER-ADO/TAP-
Cargo-Delivery and this part takes 4711 lines of code.
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Fig. 6: TBAC Assisted In-home Cargo Delivery

5 CASE STUDY: TBAC ASSISTED IN-HOME
CARGO DELIVERY

In this section, we report a case study that employs TBAC to
assist in-home cargo delivery. This case study demonstrates
how TBAC and IoT can seamlessly work together to control
a smart lock in a secure, fine-grained, and accountable
manner for safe in-home delivery.

In the US, online-purchased merchandises are usually
delivered to the outside doorstep of a house, thereby risk
of being stolen. With the help of the smart door lock, a
deliveryman can open the house door and leave the cargo
inside. This may seem to be a good solution and in fact it
has been adopted by Amazon [35]. Nevertheless, by signing
up for this in-home delivery service, users would surrender
to the unlimited, unconditional, and unauditable accesses
to their homes as an unlimited access token is issued from
the door lock manufacturer’s access server to Amazon after
authorizing Amazon the access privilege to the door. It may
get worse if the Amazon’s server is compromised or the
token is stolen or abused. In this section, we show that
with TBAC, one can have high confidence that only the
customer-approved accesses can take place, with a complete
auditing. We also emphasize that with a fine-grained access
policy specified by the customer, a robust access control
object can monitor the delivery procedure to ensure that
the deliveryman does not intrude the house by doing more
than dropping the package.

Fig. 6 demonstrates our TBAC assisted in-home cargo
delivery case study. When an order is placed, a tokoin
specifying the detailed access policy to the customer’s house
is also created. The order and the tokoin are sent together to
the seller, who then transfers the tokoin to the first courier
of the package when it leaves the warehouse. In transit the
tokoin changes its holder when the package is handed to a
different courier. The customer can monitor this process via
TAP and can change the access policy based on the ship-
ment status. When a courier arrives at the doorstep of the
destination house, the tokoin is redeemed and the package
is dropped inside home if the access policy verification suc-
ceeds. For security and safety, the access policy specifies that
the deliveryman cannot walk out of the mud area to enter
the main house. Thus a video camera is adopted to monitor

the procedure and a violation is reported immediately when
detected. In the following we present this case study in two
processes: an initialization process and a delivery process.

5.1 Initialization

The initialization process consists of customer account ini-
tialization and TACO initialization. Note that we assume
that the seller and its couriers are TBAC clients thus no extra
work is needed here.

Camera LPC55S69-EVK
Testboard for 

Debug

Fig. 7: Experiment Setup of TEE

Account Initialization. Upon initialization, a customer
calls the Gen function to generate a pair of keys sk and pk,
registers itself with and broadcasts its public key pk to the
blockchain network, and keeps the private key sk to itself.
The customer downloads the TAP software and becomes a
TBAC participant who can talk with the blockchain securely.

TACO System Configuration. To establish the TACO
for our in-home cargo delivery case study, we adopt an
LPC55S69-EVK microcontroller secured by an ARMv8-M
TrustZone, a smart lock, a GPS receiver, and a low voltage
UART serial image sensor camera. In addition, a testboard is
utilized for debugging purpose. Upon initialization, TACO
generates a secret key sk and a paired public key pk using
crypto-libraries in LPC55S69-EVK. Then it broadcasts its pk
to the blockchain for self-registration. The pk is used as the
address and the unique identifier of the TACO system in the
blockchain. TACO also uses the camera to capture the nor-
mal background of the home mud area when nobody shows
up, and stores it as a STANDARD PATTERN into its secure
zone for future detection of over-privileged behaviors such
as the deliveryman walking out of the mud area to enter the
main room. The pk and the STANDARD PATTERN are then
registered as a tokoin transaction in the blockchain.

Note that we have implemented the drivers of the GPS
receiver and the UART serial camera in the secure zone,
which directly connects to the corresponding devices for
secure data collection. Also in our case study TACO is able
to command the smart lock via secure communications with
the lock server, who can securely talk with the smart lock,
thus avoiding the hassle of writing a driver in the secure
zone and connecting it to the lock. Fig. 7 illustrates the TEE
setup with the sensor camera – the GPS receiver is omitted
for better illustration.
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5.2 Delivery Process

The delivery process is depicted in Fig. 6, whose steps are
detailed as follows.

Create a tokoin. Before an order is placed, the customer
mints a tokoin by sending msg : [pk||tID, create, policy]σrO

to the blockchain, who then creates a tokoin t and logs
it in a transaction. The policy specifies who (any legitimate
deliveryman) is allowed to do what (cargo delivery) in where
(address of the house) at when (e.g., 2-3PM tomorrow) by
how (enter the house, drop the package in the mud area, then
leave the house in 5 minutes). See Fig. 8(a) and Fig. 8(b) for
an illustration. The tokoin t and the order together are then
sent to the seller.

Transfer the tokoin. The seller then assigns a courier
to this order, and transfers t to the courier via a Transfer
message when the package is handed to the courier. As we
have discussed before, t can be freely transferred among
the couriers through a standard transfer operation, which
eases the re-distribution of the delivery job for better logistic
convenience. Besides, the customer has the right to track the
tokoin through a tokoin map as shown in Fig. 8(c). It can also
modify the tokoin (e.g., changing the delivery time window)
during this process at its will before the tokoin is redeemed.

Redeem the tokoin. When a deliveryman arrives at
the house address and wishes to redeem the tokoin t to
complete the job, Redeem is called, which sends the tokoin t
to TACO, who would perform the following three tasks for
tokoin redemption.

1. Access Condition Verification. After receiving t, TACO
needs to Verify: 1) whether t is a valid tokoin; 2) whether
the deliveryman is a legitimate subject according to the
cryptographic accumulator carried by policy; and 3) whether
the spatio-temporal access conditions are met, i.e., the time
of delivery and the delivery address are all consistent with
what are specified by policy. If all verifications succeed,
TACO instructs the smart door lock to open the door and
let the deliveryman in to drop the package.

2. Access Procedure Monitoring. After entering the house,
the deliveryman should drop the package in the mud area
and leave in time specified by policy. To monitor this process,
TACO constantly reads inputs from the UART serial camera
and checks the position of the deliveryman by detecting
moving objects in the video. Specifically, TACO computes
the difference between the STANDARD PATTERN and every
video frame, and adds them up as a differential monitoring
pattern, which is obviously a bitmap with boolean 1 for
presence and 0 for absence of the deliveryman. The deter-
mination of a violation, i.e., an overpriviledged access, is
detected if there is a boolean 1 out of the mud area, see the
illustration in Fig. 9, which uses an imaginary red line to
represent the boundary of the mud area.

There are two possible types of violations:

• Case 1: the deliveryman stays longer than the time
specified by policy. In this case, TACO would first ring
an alarm bell, then send a signed OVERTIME message
to the customer. If the deliveryman does not leave
immediately, TACO may call the police.

• Case 2: the deliveryman walks out of the permitted
mud area to enter the main room. If this case is de-
tected, as shown Fig. 9(c)(d), the corresponding pat-

tern of motion trajectory is recorded as a proof of an
over-privileged behavior; then TACO sends a signed
OVER-PRIVILEGED PATTERN to the blockchain and
takes appropriate measures such as locking the smart
door and calling the police.

3. Post-Access Management. If no violation is detected,
TACO sends a signed SUCCESS to the blockchain after the
deliveryman successfully drops the package in the mud area
and leaves the house. Note that all the data for access condi-
tion verification and access procedure monitoring must be
signed with the private key of TACO and stored within the
TEE secure zone. This can guarantee the integrity and the
trustworthiness of the data. The data itself or a digest of the
data (if the data is too big) is also sent to the blockchain to
be included in a tokoin transaction as a script for auditing
the Redeem operation.

5.3 Performance Evaluation
The execution time for each tokoin management function in
our case study is reported in Fig. 10. This figure shows the
performance of different TBAC implementations, in loga-
rithmic scale. The reason why we choose log scale is because
the confirmation times of Go-Tokoin and Ethereum-Tokoin
in three different platforms vary up to two magnitudes.
Our native Go-Tokoin takes typically 40-60 milliseconds
to confirm each transaction, while the Ethereum-Tokoin in
Quorum consortium chain takes about 1 second (more than
a magnitude) and that in Mainnet takes about 30 to 50
seconds (one more magnitude than that). One should notice
that Go-Tokoin takes much longer time in Redeem, which
includes the time for PolicyCheck. This is because Redeem
requires TACO to sample the sensor readings, analyze the
data, take corresponding actions if needed, and finally com-
municate the data back to blockchain. Note that we actually
transmit only the digest of the video data in our case study,
thus the packet size is small, which is less than 0.2 MB. Also
note that the total size of the executable binaries (including
sensor drivers and processing algorithms) compiled and
stored in the MCU is about 2790 KB, which does not cost
too much memory. Besides, the transaction cost on the
Ethereum Mainnet is about 2967k Gas on average ($14.7
USD, in July 16, 2019), while our consortium Go-Tokoin is
free.

6 CONCLUSIONS AND DISCUSSIONS

In this paper we propose TBAC, an accountable IoT access
control model that makes use of blockchain and TEE tech-
nologies to realize its goal of offering fine-grained access
(procedure) control with strong auditability. We design and
implement three components: 1) a blockchain system to
manage tokoin and its access policy, 2) a trusted access
control object (TACO) to sense the physical world, make
actual access decisions, and monitor the access procedure,
and 3) an App-based user interface. We also present a
TBAC-assisted in-home cargo delivery case study to illus-
trate how TBAC is employed to secure the procedure for
a deliveryman to open a door and drop the package in
the mud area of a room without entering the main room,
demonstrating the efficient performance and effective con-
trol over the deliveryman’s access behavior by TBAC.
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(a) Creating tokoin (b) Detailed information of a tokoin (c) Geographic trace of a tokoin

Fig. 8: Android Tokoin Activities for Cargo Delivery

(a) An actual frame of a
TACO camera capture

(b) A TACO captured pattern
of benign behavior

(c) A TACO captured pattern
of minor violation behavior

(d) A TACO captured pattern
of a major violation behavior

Fig. 9: A Set of Actual Captures of TACO for Overprivileged-Access Monitoring
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Fig. 10: Function Execution Time

Our current TBAC implementation as well as the case
study focus on the application scenario where a resource

owner would like to grant a one-time access to his resource
to one or more designated subjects when certain conditions
(‘when’ and ‘where’) should be met and certain procedures
(‘how’)) need to be followed. In fact, TBAC can be extended
along the following lines, which mainly bring engineering
issues that do not affect the security of the TBAC model.

• It is trivial to allow a tokoin to be reused/redeemed,
by adding a perspective procedural constraint (PPC)
“times” in the access policy specifying the number of
times the tokoin is allowed to be used. To support this
extension, the tokoin needs to be modified (i.e., decreas-
ing “times” by 1) and sent back to the blockchain after
a successful redemption, which could be done securely
by either TACO in TEE or the resource owner, with
necessary changes in the Modify and Redeem functions.
This extension allows the owner to give a subject the
right to access the resource multiple times; when com-
bining with other constraints, granting the access on a
daily basis is also possible.

• Our current implementation of TBAC gives multiple
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subjects the opportunity to access the resource with the
same tokoin via a cryptographic accumulator but only
one subject is allowed to finally redeem the tokoin. By
combining with the first extension, the same tokoin
can be used by multiple subjects at different times;
when multiple subjects access the same resource simul-
taneously with different tokoins, access conflict may
occur and the function of TACO needs to be extended
to handle the races and resolve conflicts. When the
resource has multiple owners and one would like to al-
low all owners to have the same modify/revoke rights
over a tokoin created by one owner, a cryptographic
accumulator can be adopted to designate the group of
legitimate owners of the tokoin (replacing the pkO field
of a tokoin with a cryptographic accumulator).

• The current description of the 4W1H policy stresses
sampling physical world to collect the information
(‘when’ and ‘where’) for the pre-access condition ver-
ification to grant access. In fact, it is not hard to support
decision-making based on information from the digital
world, e.g., a username and password pair or a one-
time password, by adding the corresponding informa-
tion in the access policy, e.g., adding a password line as
a static condition in the access policy, as long as the
functionality of TACO is correspondingly expanded.
This extension is particularly useful for applications
such as errand delegation, where an account owner
needs to delegate someone to process certain urgent
business on his behalf without disclosing his own sen-
sitive account information.

These extensions make applications of TBAC very versa-
tile. For examples, by developing appropriate TACO func-
tionality, TBAC can support situational-aware access control
in which the status of the physical environment (or an
abstract situation) needs to be monitored (see [20]), and can
resolve races among different IoT devices by adopting the
approach presented in [24] (TACO takes the responsibility
of the backend server and policy manager in [24]). Nev-
ertheless, TBAC is not a “master key” to solve all access
control problems; it has its own limitations and restrictions.
First, TBAC needs the support of blockchain and TEE tech-
nologies, which bring extra cost and may not be available;
second, TBAC requires owners to define access policy, which
places extra burden on them, and offers fine-grained access
control with strong auditability, which may imply excessive
control for ordinary users in daily life; both concerns may
hurt users’ experiences making them completely turn off the
service. Therefore, one should consider the tradeoff among
cost, application requirements, and user experiences when
making the decision on whether or not to adopt TBAC. Note
that there exist many well-studied access control mecha-
nisms that perfectly fit their particular application needs.
In fact, TBAC is orthogonal to them, and can be adopted as
a supplement to enhance their security when needed.

Our future research will be carried out along the follow-
ing three directions. First, we will develop a more compli-
cated case study to further investigate the strength of TBAC
in fine-grained access control with strong auditibility. We
target a multi-user smart home IoT system where an IoT
device has multiple owners/users that may control it with

conflict commands and that may access it on a daily basis.
We will implement the extensions mentioned above to sup-
port such a scenario. Second, we intend to explore the ap-
plicability of TBAC beyond access control. We will consider
the heavy machinery rental business in which a number
of IoT devices are deployed within each rental machine to
monitor how the machine is used from all angles (when
and where is used by who and how). Such an application
may also involve loans and payments, bringing interesting
research challenges when considering the seamless integra-
tion of device use control and the related loans/payments
via blockchain. Third, we will develop TBAC-enabled apps
that can allow a staff to reply a particular email on behalf of
its manager or enable a friend to withdraw certain amount
of money via an ATM machine from a bank account without
disclosing any sensitive account information to the staff or
the friend. Such apps are good research projects that involve
challenges requiring different tradeoffs and optimizations.
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7 AVAILABILITY

Open source codes of Go-Tokoin, Ethereum-Tokoin, TEE-
enabled Access Control Object (TACO) and Tokoin App
(TAP) are available at:

1) https://github.com/zhuaiballl/Go-Tokoin
2) https://github.com/DES-PER-ADO/Ethereum-Tokoin
3) https://github.com/DES-PER-ADO/TACO
4) https://github.com/DES-PER-ADO/TAP-Cargo-

Delivery
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